Crossing Minimization within Graph Embeddings Crossing Minimization within Graph Embeddings
نویسندگان
چکیده
We propose a novel optimization-based approach to embedding heterogeneous high-dimensional data characterized by a graph. The goal is to create a two-dimensional visualization of the graph structure such that edge-crossings are minimized while preserving proximity relations between nodes. This paper provides a fundamentally new approach for addressing the crossing minimization criteria that exploits Farkas’ Lemma to re-express the condition for no edge-crossings as a system of nonlinear inequality constraints. The approach has an intuitive geometric interpretation closely related to support vector machine classification. While the crossing minimization formulation can be utilized in conjunction with any optimization-based embedding objective, here we demonstrate the approach on multidimensional scaling by modifying the stress majorization algorithm to include penalties for edge crossings. The proposed method is used to (1) solve a visualization problem in tuberculosis molecular epidemiology and (2) generate embeddings for a suite of randomly generated graphs designed to challenge the algorithm. Experimental results demonstrate the efficacy of the approach. The proposed edge-crossing constraints and penalty algorithm can be readily adapted to other supervised and unsupervised optimization-based embedding or dimensionality reduction methods. The constraints can be generalized to remove overlaps between any graph components represented as convex polyhedrons including node-edge and node-node intersections.
منابع مشابه
Optimal Acyclic Hamiltonian Path Completion for Outerplanar Triangulated st-Digraphs (with Application to Upward Topological Book Embeddings)
Given an embedded planar acyclic digraph G, we define the problem of"acyclic hamiltonian path completion with crossing minimization (Acyclic-HPCCM)"to be the problem of determining an hamiltonian path completion set of edges such that, when these edges are embedded on G, they create the smallest possible number of edge crossings and turn G to a hamiltonian digraph. Our results include: --We pro...
متن کاملSpine Crossing Minimization in Upward Topological Book Embeddings
An upward topological book embedding of a planar st-digraph G is an upward planar drawing of G such that its vertices are aligned along the vertical line, called the spine, and each edge is represented as a simple Jordan curve which is divided by the intersections with the spine (spine crossings) into segments such that any two consecutive segments are located at opposite sides of the spine. Wh...
متن کاملInserting a vertex into a planar graph
We consider the problem of computing a crossing minimum drawing of a given planar graph G = (V, E) augmented by a star, i.e., an additional vertex v together with its incident edges Ev = {(v, u) | u ∈ V }, in which all crossings involve Ev. Alternatively, the problem can be stated as finding a planar embedding of G, in which the given star can be inserted requiring the minimum number of crossin...
متن کاملComplexity of Finding Non-Planar Rectilinear Drawings of Graphs
Monotone Drawings of Graphs p. 13 Upward Geometric Graph Embeddings into Point Sets p. 25 On a Tree and a Path with No Geometric Simultaneous Embedding p. 38 Difference Map Readability for Dynamic Graphs p. 50 Maximizing the Total Resolution of Graphs p. 62 Plane Drawings of Queue and Deque Graphs p. 68 An Experimental Evaluation of Multilevel Layout Methods p. 80 Orthogonal Graph Drawing with ...
متن کاملEdge Separators for Graphs of Bounded Genus with Applications
We prove that every n-vertex graph of genus 9 and maximal degree k has an edge separator of size O( ..;gTffl). The upper bound is best possible to within a constant factor. This extends known results on planar graphs and similar results about vertex separators. We apply the edge separatorto the isoperimetric number problem, graph embeddings and lower bounds for crossing numbers.
متن کامل